Y. Fu and N. C. Turgay Complete classification of biconservative hypersurfaces with diagonalizable shape operator in Minkowski 4-space (submitted). |
N. C. Turgay Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space (submitted). |
E. Ö. Canfes, N. C. Turgay On the Gauss map of minimal Lorentzian surfaces in 4-dimensional semi-Euclidean spaces (submitted). |
N. C. Turgay A classification of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension (submitted). |
U. Dursun, N. C. Turgay Space-like Surfaces in Minkowski Space $\mathbb E^4_1$ with Pointwise 1-Type Gauss Map (submitted). |
N. C. Turgay Some classifications of biharmonic Lorentzian hypersurfaces in Minkowski 5-space (accepted) Mediterr. J. Math., DOI: 10.1007/s00009-014-0491-1. |
Y. H. Kim, N. C. Turgay On the ruled surfaces with L1-pointwise 1-type Gauss Map (accepted) Kyungpook Math. J. |
N. C. Turgay On the quasi-minimal surfaces in the 4-dimensional de Sitter space with 1-type Gauss map (accepted) Sarajevo J. Math. |
N. C. Turgay H-hypersurfaces with 3 distinct principal curvatures in the Euclidean spaces (accepted, to print) Ann. Mat. Pura Appl., DOI: 10.1007/s10231-014-0445-z. |
N. C. Turgay On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, Gen. Relativ. Gravit. (2014) 46:1621, DOI: 10.1007/s10714-013-1621-y. |
Y. H. Kim, N. C. Turgay On the helicoidal surfaces in $\mathbb E^3$ with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), 4, pp. 1345--1356. |
Y. H. Kim, N. C. Turgay Surfaces in $\mathbb E^3$ with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50 (2013), 3, 935--949. |
U. Dursun, N. C. Turgay Minimal and Pseudo-Umbilical Rotational Surfaces in Euclidean Space $\mathbb E^4$, Mediterr. J. Math., 10 (2013), 1, 497-506. |
U. Dursun and Emel Coşkun, Flat surfaces in the Minkowski space E31 with pointwise 1-type Gauss Map, Turk J. Math 36 (2012) , 613 – 629. |
Dursun, U. ve Turgay, N.C., General rotational surfaces in Euclidean space E-4 with pointwise 1-type Gauss map [2012] Mathematical Communications -Vol. 17(1), pp. 71-81 |
Dursun, U. ve Turgay, N.C., Minimal and Pseudo-Umbilical Rotational Surfaces in Euclidean Space E-4 [2013] MEDITERRANEAN JOURNAL OF MATHEMATICS Volume: 10 Issue: 1 Pages: 497-506 diger |
Dursun, U. ve Turgay, N.C., On space-like surfaces in Minkowski 4-space with pointwise 1-type Gauss map of the second kind [2012] Balkan Journal of Geometry and Its Applications -Vol. 17(2), pp. 34-45 |
U. Dursun and G.G. Arsan, Surfaces in Eucidean space E4 with pointwise 1-type Gauss map, Hacettepe Journal of Mathematics and Statistics, Volume 40 (5) (2011), 617 – 625 |
U. Dursun, Flat Surfaces in the Euclidean Space E3 with Pointwise 1-Type Gauss Map, Bull. Malays. Math. Sci. Soc. (2) 33(3) (2010), 469{478 |
U. Dursun, Rotation Hypersurfaces in Lorentz-Minkowski Space with Constant Mean Curvature, Taiwanese J. Math. 14(2010), 685-705 |
U. Dursun, Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci., 58 (2009), 146-161. |
G. G. Arsan, E. O. Canfes, U. Dursun On null 2-type submanifolds of the pseudo Euclidean space E^5_t, Int. Math. Forum, 3(2008) no. 13, 609-622. |
U. Dursun, Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11 (2007), no. 5, 1407--1416. |
U. Dursun, Null 2-type submanifolds of the Euclidean space E5 with non-papallel mean curvature vector, J. Geom. 86(2006), 73-80. |
U. Dursun, Null 2-type space-like submanifolds of E5_t with normalized parallel mean curvature vector, Balkan J. Geom. Appl. 11 (2006), no. 2, 61-72. |
E.O.Canfes,F.Ozdemir,Generalized Recurrent Kahlerian Weyl spaces, İranian Journal of Science and Technology.( Baskıda) |
E.O.Canfes, F.Ozdemir, On Generalized Recurrent Kahlerian Weyl Spaces, Int. Math Forum, Vol. 6, (2011), no. 60, 2975 – 2983. |
E.O.Canfes, Isotropic Weyl manifolds with semi-symmetric connection,Acta Mathematica Scientia , 29B(1), (2009),, 176 -180. |
E.O.Canfes, On Generalized Recurrent Weyl Spaces and Wong's conjecture, Differential Geometry and Dynamical Systems, 8 (2006) 34-42. |