Doç. Dr. Zehra Çataltepe
Doç. Dr. Mustafa Kamaşak
Doç. Dr. Hazım Ekenel
Yrd. Doç. Dr. Hatice Kose
Yrd. Doç. Dr. Gökhan İnce
Yrd. Doç. Dr. Ömer Sinan Saraç
Yrd. Doç. Dr. İlker Bayram
Öğr. Gör. Dr. Serkan Türkeli
Ticarileşen, Ticarileşme Aşamasında olan veya Ticarileşme Potansiyeli olan Ürünler
Geliştirilen Başlıca Yöntemler, Prosedürler, Mekanizmalar, Ürünler, Yönetmelikler
1 Ilker Bayram and Mustafa E. Kamasak, "Directional total variation", IEEE Signal Proc. Letters, vol 19, no 12, pp. 781-784, 2012
2 T. Avsar, D. Korkmaz, M. Tutuncu, N.O. Demirci, S. Saip, M. E. Kamasak, A. Siva, E.T. Turanli, Protein Biomarkers for Multiple Sclerosis: Semi-quantitative Analysis of CBF Candidate Protein Biomarkers in Different Forms of Multiple Sclerosis, Multiple Sclerosis Journal, Vol. 18, no 8, pp. 1081-1091, 2012
3 Mustafa E. Kamasak. Computation of variance in compartment model parameter estimates from dynamic PET data. Med. Phys., 39(5):2638-2648, May 2012
4 D. Ünay, Z. Çataltepe and S. Aksoy, Recognizing Patterns in Signals, Speech, Images and Videos, ICPR 2010 Contests, Istanbul, Turkey, August 23-26, 2010, Contest Reports Lecture Notes in Computer Science, Volume 6388, 2010, DOI: 10.1007/978-3-642-17711-8.
5 M. E. Alper and Z. Cataltepe, Improving Course Success Prediction Using Abet Course Outcomes And Grades, CSEDU (The 4th International Conference on Computer Supported Education), Porto, Portugal, April 16-18, 2012.
6 A. Aral and Z. Cataltepe, Learning Styles For K-12 Mathematics E-Learning, CSEDU (The 4th International Conference on Computer Supported Education), Porto, Portugal, April 16-18, 2012.
7 Y. Yaslan and Z. Cataltepe, Co-training with Relevant Random Subspaces, Neurocomputing, Volume 73, Issues 10-12, June 2010, pp 1652-1661.
8 G. Gulgezen, Z. Cataltepe, L. Yu, Stable and Accurate Feature Selection, ECML/PKDD 2009, Bled, Slovenia.
9 E. Aygun, B. J. Oommen and Z. Cataltepe, “Peptide Classification Using Optimal and Information Theoretic Syntactic Modeling, doi:10.1016/j.patcog.2010.05.022, Pattern Recognition.
10 Z. Cataltepe and B. Altinel, Music Recommendation by Modeling User’s Preferred Perspectives of Content, Singer/Genre and Popularity in "Collaborative and Social Information Retrieval and Access: Techniques for Improved User Modeling" edited by M. Chevalier, C. Julien and C. Soulé-Dupuy, IGI Global, pp. 203-221, ISBN: 978-1-60566-306-7.
11 Z. Cataltepe, Y. Yaslan and A. Sonmez, Music Genre Classification Using MIDI and Audio Features, EURASIP Journal of Advances in Signal Processing, vol. 2007 (January), Article ID 36409, 8 pages.
12 Y. Yaslan, Z. Çataltepe, A Comparison Framework of Similarity Metrics Used for Web Access Log Analysis, poster presentation at MLDM (Machine Learning and Data Mining) 2007, July 18-20, 2007, Leipzig/Germany.
13 Ü. Yildirim, Z. Cataltepe, Oruntu Tanima ve Oznitelik Secme Yontemleri Kullanarak Kisa Zaman Sonraki Yol Trafik Hız Ongorusu, Türkiye Bilisim Vakfı, Bilgisayar Bilimleri ve Mühendisliği Dergisi, 2010, Sayı 3, Sayfa 21-28.
14 KOSE, H., R. Yorganci , H. E. Algan, D.S. Syrdal, “Evaluation of the Robot Assisted Sign Language Tutoring using video-based studies”,International Journal of Social Robotics , Volume 4, Number 3 (2012), 273-283, DOI: 10.1007/s12369-012-0142-2
15 Q. Shen, H. KOSE-BAGCI, J. Saunders, K. Dautenhahn, “The Impact of Participants’ Beliefs on Motor Interference and Motor Coordination in Human-Humanoid Interaction “, IEEE T. Autonomous Mental Development (IEEE TAMD), VOL. 3, NO. 1, pp. 6-16, March, 2011.
16 KOSE-BAGCI, H, .K. Dautenhahn, D. S. Syrdal, and C. L. Nehaniv, “Drum-mate: interaction dynamics and gestures in human–humanoid drumming experiments,” Connection Science, vol. 22, no. 2, pp. 103– 134, 2010.
17 KOSE-BAGCI, H., E. Ferrari, K. Dautenhahn, D. S. Syrdal, and C. L. Nehaniv, “Effects of Embodiment and Gestures on Social Interaction in Drumming Games with a Humanoid Robot“, Special issue on Robot and Human Interactive Communication, Advanced Robotics, Vol. 24, No.14, pp. 1951-1996, 2009.
18 Dautenhahn, K., C. L. Nehaniv, M. L. Walters, B. Robins, H. KOSE-BAGCI, N. A. Mirza, M. Blow KASPAR - A Minimally Expressive Humanoid Robot for Human-Robot Interaction Research. Special Issue on "Humanoid Robots", Applied Bionics and Biomechanics 6(3): 369-397, 2009
19 K. Nakamura, K. Nakadai, F. Asano, H. Nakajima, G. Ince: Intelligent Human Tracking Based on Multimodal Integration, Transactions of the Society of Instrument and Control Engineers, Vol. 48, No. 6, pp.349-358, 2012 (In Japanese)
20 G. Ince: Ego Noise Estimation for Robot Audition, Journal of Japanese Society for Artificial Intelligence, Vol.27, No.1, p. 92, January 2012.
21 G. Ince, K. Nakadai, T. Rodemann, H. Tsujino, J. Imura: Ego-motion Noise Cancellation of a Robot using Missing Feature Masks, Applied Intelligence, Vol.34, No.3, pp.360-371, June 2011.
22 G. Ince, K. Nakadai, T. Rodemann, H. Tsujino, J. Imura: Whole Body Motion Noise Cancellation of a Robot for Improved Automatic Speech Recognition, Advanced Robotics, Vol.25, No.11, pp. 1405-1426, July 2011.
23 G. Ince (with K. Nakadai): Speech Recognition System and Speech Recognizing Method, Application No: 20120095761, 13157648, App date: 2011-06-10, Pub date: 2012.
24 G. Ince (with K. Nakadai, H. Tsujino, T. Rodemann): Acoustic Data Processor and Acoustic Data Processing Method, US Application No: 20100299145, AG10L1520FI, Filing date: May 20, 2010.
25 G. Ince (with K. Nakadai): Acoustic Data Processor and Acoustic Data Processing Method, JP Application No: H1103006JP01, Filing date: Oct 15, 2010.
26 Saraç, O. S., Pancaldi, V., Bähler, J., & Beyer, A. (2012). Topology of Functional Networks Predicts Physical Binding of Proteins. Bioinformatics (Oxford, England). doi:10.1093/bioinformatics/bts351
27 Elefsinioti, A., Saraç, Ö. S., Hegele, A., Plake, C., Hubner, N. C., Poser, I., Sarov, M., et al. (2011). Large-scale de novo prediction of physical protein-protein association. Molecular & cellular proteomics : MCP, 10(11), M111.010629. doi:10.1074/mcp.M111.010629
28 Pancaldi, V., Saraç, O. S., Rallis, C., McLean, J. R., Převorovský, M., Gould, K., Beyer, A., et al. (2012). Predicting the fission yeast protein interaction network. G3 (Bethesda, Md.), 2(4), 453–67. doi:10.1534/g3.111.001560
29 Saraç, O. S., Atalay, V., & Cetin-Atalay, R. (2010). GOPred: GO molecular function prediction by combined classifiers. PloS one, 5(8), e12382. doi:10.1371/journal.pone.0012382
30 H.K. Ekenel, T. Semela, “Multimodal Genre Classification of TV Programs and YouTube Videos”, Springer Multimedia Tools and Applications, accepted for publication.
31 M. Fischer, H.K. Ekenel, R. Stiefelhagen, “Person Re-identification in TV Series Using Robust Face Recognition and User Feedback“, Springer Multimedia Tools and Applications, Vol. 55, No.1, pp. 83-104, 2011.
32 K. Bernardin, H.K. Ekenel, R. Stiefelhagen, “Multimodal Identity Tracking in a Smart Room” Springer Personal and Ubiquitous Computing, Vol. 13, No. 1, pp. 25-31, January 2009.
33 R. Stiefelhagen, H.K. Ekenel, C. Fügen, P. Gieselmann, H. Holzapfel, F. Kraft, K. Nickel, M. Voit, A. Waibel, "Enabling Multimodal Human-Robot Interaction for the Karlsruhe Humanoid Robot", IEEE Transactions on Robotics, Vol. 23, No. 5, pp. 840-851, October 2007.
34 H. K. Ekenel, H. Gao, R. Stiefelhagen, "3-D Face Recognition Using Local Appearance-Based Models", IEEE Transactions on Information Forensics and Security, Vol. 2, No. 3, pp. 630-635, September 2007.
35 R. Stiefelhagen, K. Bernardin, H.K. Ekenel, J. McDonough, K. Nickel, M. Voit, M. Wölfel, "Audio-Visual Perception of a Lecturer in a Smart Seminar Room", Signal Processing, Vol. 86, No. 12, pp. 3518-3533, December 2006.
36 H.K. Ekenel, B. Sankur, "Multiresolution Face Recognition", Image and Vision Computing, Vol. 23, No. 5, pp. 469-477, May 2005.
37 H.K. Ekenel, B. Sankur, "Feature Selection in the Independent Component Subspace for Face Recognition", Pattern Recognition Letters, Vol. 25, No. 12, pp. 1377-1388, September 2004.